MODIS Light

Option for Low-Risk EOS Cost Reduction

(Contact: Carl Schueler

805-562-7155; fax 7767

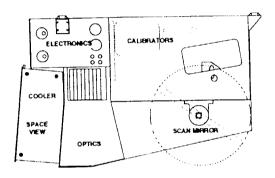
e-mail: cfschueler@ccgate.hac.com)

2 May 1996

Hughes Santa Barbara Remote Sensing

MODIS Light Lowers Cost Minimizes Risks

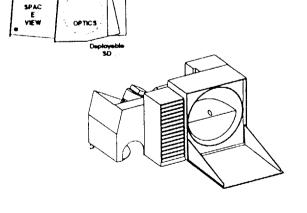
- Reduce Spacecraft Resources and Launch Mass
 - Delete less critical subsystems (e.g., SRCA)
 - Reduce Scan ($\pm 45^{\circ}$) and Aperture (6")
 - Repackage to Cut Mass & Volume
 - Reduced Electronics Lowers Power
- Reduce Instrument Recurring Engineering (RE) and Non-RE (NRE) Costs
 - Maximum use of Existing Flight Subsystems cuts NRE
 - Maximum use of Existing Ground Equipment cuts NRE
 - Streamlined Documentation/Manufacturing Process cuts Both
- High Performance and Low Risk
 - 36 MODIS Bands with same IFOVs/Spectral Definition
 - Solar Diffuser/Blackbody Calibration
 - Minimal Impact to MODIS Processing Algorithms


MODIS to MODIS Light

Baseline

• Bands

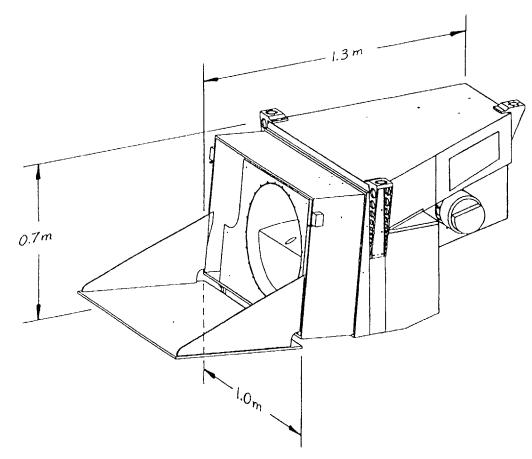
Calibration 220 kg Mass • SRCA 1x1.6x1m • Size • SDSM 160W Power • SD No NRE • Cost • BB 36


Smaller Scanner Reduced Calibration Smaller Mainframe Repackaged Electronics

Calibration 100 kg Mass • SD 1x0.6x0.7m Volume

100W • BB Power

Low NRE Cost


36 Bands

COOLE

MODIS Light - Baseline Scan Approach

- Larger than MODIS Light with Tilted Scan
- Baseline Swath Shape and Optical Path

Design Approach Affects Performance

Parameter	Selected MODIS Design (Including MODIS Light)	Other Approaches Considered*
Radiometric Stray Light Calibration Tunability**	 Low with 2d Int. Stop Allows Frequent Calibration Small Calibration Target Individual Array per Band 	 Field Stop Limited to 1d Calibration Obstructs Scene; 1/f noise Requires Large, Uniform Target Bands share Detectors: Hi Gain Appls Penalized
Spectral Bandpass Shape Purity	 Tailored Band-shapes Individual Filters fed by Distributed Blocking 	 Requires Band Synthesis More Difficult to Maintain Constant Center λ across FOV; Difficult Out-of-Band Rejection
Spatial Uniformity	Full-Field UniformityFew Detectors Eases Calibration	WFOV Edge Distortion More difficult Calibration

^{*} Narrow/Wide FOV Spectrometers using Gratings, Prisms, or Wedge Filters

^{**}MODIS has multiple similar bands with Application Specific Radiometry

Summary

- Straightforward Repackaging Offers Significant Reduction in Mass and Volume
- Reduces Instrument Cost: Low NRE and RE MODIS Miniaturization Approach
- Maximizes MODIS Data Continuity: Minimal Impact to MODIS Processing Algorithms
- Preserves *Optical Bench Assembly* "Heart of MODIS" that Retains MODIS Spectroradiometry